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On the Noise Parameters of Isolator and Receiver

with Isolator at the Input

MARIAN W. POSPIESZALSKI, SENIOR MEMBER, IEEE

Abstract — Noise parameters of an isolator and those of a receiver with

an isolator at the input are reviewed. Some comments on recently pub-

lished results are offered.

I. INTRODUCTION

Isolators are very commonly used in low-noise receivers as well

asinnoise measuring systems (for instance, [l]-[5]). Usually their

purpose istoisolate either the noise source orthe receiver from

the rest of the system. In these cases, the noise properties of

either the isolator alone or the receiver with the isolator at the

input need to be known. This paper offers a brief discussion of

the noise properties of these two-ports and gives closed-form

expressions in some idealized cases for the set of noise parame-

ters, namely minimum noise temperature T~,n, optimum source

reflection coefficient I’OPt, and noise parameter N as defined in

[9]. A short discussion of some of the recently published results

[4], [5], [11], [15] is also given.

II. THEORY

Consider a linear, noisy system schematically presented in Fig.

1. Signal parameters of both an isolator and a receiver are

represented by chain matrices [AI] and [AR] and their noise

parameters by correlation matrices [CAI] and[C’~], respectively

[6]. An Isolator is a passive, nonreciprocal, linear two-port with

thermal noise generators only and, therefore, its noise parameters

can be derived from its signal parameters [7]. The appropriate
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Fig. 1, A cascade connection of Isolator and receiver.

equivalent networks with pertinent formulas [7], [8] are given in

Fig. 2. Then the correlation matrix [CA] completely characterizing

the noise parameters of the system at the input port of the

isolator is [8]

[CA]=[CA,]+[’4J[CAR][AJ (1)

where the “dagger” designates the complex conjugate of the’

transpose of [AI] matrix. Any desired set of noise parameters can

be derived from [CA] (for instance, [6], [8]-[10]).

It should be stressed that this approach is not limited by the

particular realization of au isolator as, for instance, a Faraday

rotation isolator or an isolator made of a circulator with one port

terminated. The noise properties of both isolators are the same if

they are at the same physical temperature and their two-port

signal parameters are the same.

Although the formulas presented in Figs. 1 and 2 and also (1)

lend themselves easily to computer implementation (for instance,

[13], [14]), and, therefore, are convenient to use in computer-aided

design and/or computer-aided measurement, it is very instructive

to discuss the conventional noise parameters of an ideal isolator,

which is equivalent to art ideal circulator with one port terminated

(Fig. 3(a)). It follows directly from Twiss’s [7] generaf approach

or from simple physical reasoning that the noise parameters of an

ideal isolator are

Tm,n = O, I’OP,= O, N=&
o

(2)

where

Tmm

r
opt

To= 290 K
TU

N

minimum noise temperature,
optimum reflection coefficient of the source,
standard temperature,
physical temperature of a circulator termination,
(or physical temperature of an isolator),

noise parameter defined in [9].

It is instructive to give physical interpretation of the noise

parameters given by (2). An ideal isolator emits a noise wave

from its input port, which is totally absorbed by the source if

~g = rOP, = O. In this case, no noise generated by the isolator

appears at its output and T~,. = O. If rg # O, part of the noise is

reflected back and appears at the isolator output, which gives rise

to parameter N >0.

Small losses L of au isolator in the forward direction can be
modeled accurately by a cascade connection of an ideal isolator
and a matched attenuator, as shown in Fig. 3(b). In this case of a
slightly lossy isolator, the noise parameters are

To+ T~in
Tin,. =C(L–l) ropt.o N= d% . (3)
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Fig. 2 An]solator asapasslve, nonreciprocal, llneartwo-port wlththermal noise sources only The formulas gnmnarefrom[7]
and [X]
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Tm,n=(L-l)TO, rODt=O, N=T*

o

(a) (b)

Fig. 3 ta) An ideal Isolator, as an Ideaf cmculatorwlth one port termmated

and its noise parameters. (b) An approximate model of slightly lossy Isolator

and Its nmse parameters.

20 ot TO

m

~ Tm,n= TR

I rOpt=o
~TR for rg=o

I N=T+
o

F,g 4 An approximate model of a cascade connection of Isolator and

receiver and its noise parameters

If an isolator cannot be described by these simple models, its
noise properties are best treated by the general approach outlined

in Fig. 2.

Finally, if an ideal isolator is followed by a receiver as showed

in Fig. 4 (small losses of an isolator can be modeled as part of a

receiver), the noise parameters of this system at the input port of

the isolator are

Ta + Tm,n
~n,n = T~ , ropt = o, N=

4~
(4)

Therefore, the noise temperature ~ of the system of Fig. 4 for

arbitrzuy 17~is

(5)

It is clear from (5) why only the magnitude of the source

reflection coefficient needs to be known and also why it is

advantageous to keep the termination of a circulator cold.

If the simple model of Fig. 4 does not apply, the use of (1) is

recommended, which requires the knowledge of all four noise

parameters of a receiver, two-port signaf parameters of an isola-

tor, and its physicaf temperature.

III. COMMENTS

The equivalence of noise behavior between a Faraday rotation

isolator and an isolator made of a circulator with one port

terminated has been discussed in a recent paper [11], where the

approach presented by Siegman in an earlier work [12] has been

reviewed. The conclusions of both papers [11], [12] on this subject

follow directly from the much more general result of Twiss [7].

In [4], [5], and [15], expressions for the noise figure of a system

with the isolator at the input for arbitrary r~ are given. It should

be noted that these expressions are valid only if the physicaf

temperature of the isolator T. is equal to the standard tempera-

ture TO= 290 K. This condition was not clearly stated in [4], [5],

and [15].

The formulas presented in this paper follow directly from

results published many years ago [7], [8]. The author feels,

however, in view of recently published [4], [5], [11], [15] that it is

worthwhile to present these in the form congruent with that

commonly used in the description of noisy two-ports.
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Two Core Radii For Mhimum Total Dispersion In

Single-Mode Step-Index Optical Fibers

PAULt3 SERGIO DA MOTTA PIRES,

ATTiLIO JOSE GIAROLA,

AND RUI FRAGASSI SOUZA

Abstract — Starting from the operating wavelength and the chemical

composition of the materials that integrate the core and cladding of an

optical fiber, a method was developed for the calculation of the vaftres of

the core radlfi it allows fiber operation in a monomode region with

minimum total dispersion.

The study is restricted to step-index fibers and the selected theoretical

model is based on the weakly-guiding characteristic equation. From these

considerations it is possible to obtain two different vahres of core radii for

a given source operating wavelength.

The theory described allows the characterization of an opticaf fiber for

use with a given light source and extends a previously described theory.

I. INTRODUCTION

The spread of light pulses transmitted through single-mode

opticaf fibers is caused by two main factors, material dispersion

and waveguide dispersion. The first factor results from the depen-

dence of the refractive indexes of the materials used in the

construction of the core and cladding of the optical fiber on the

wavelength. The second factor takes into consideration the effect

of the geometry of the guiding structure (the optical waveguide)

on its fundamental mode. Both factors combine and the result is

known as the total dispersion. It is worth mentioning that this

combination does not result from the simple addition of the two

factors mentioned above but rather it is much more complex than

this [1], [2].

In order to reduce as much as possible the pulse spread and

obtain as a consequence an increase in the operating passband

available, optical fibers with minimum total dispersion at the

source wavelength, A = ~, should be used. The value of \ is

obtained through the solution of the total dispersion equation.

Various methods have been proposed for solving this problem.

In the case of single-mode step-index opticaf fibers these methods

are essentially based on three procedures: 1) the use of the

weakly guiding characteristic equation [1], [4], [5]: 2) the use of

asymptotic approximations for the eigenvalues of the weakly

guiding characteristic equation [6], [8], [9]; and 3) the use of the

exact characteristic equation [3].
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For the calculation of the Wavelength for minimum total dis-

persion ~, using the exact characteristic equation, the complexity

of the algorithms used and the large number of data to be

manipulated [3] require computer systems of medium or large

size. When the weakly guiding characteristic equation is used, the

amount of data to be manipulated is reduced due to the relative

simplicity of the equations and algorithms involved. When

asymptotic approximations are used the computational proce-

dures may be implemented on small programmable calculators.

The use of any of these procedures will depend on the available

computational system and the required precision of the results.

For the calculation of ~ it is first necessary to have prior

knowledge of the optical-fiber physical characteristics, such as

the core radius and the chemical, composition of the materials

used for t~e construction of the fiber core and cladding. Once the

value of A is found, the most appropriate optical source to

operate the fiber under minimum total dispersion may be chosen.

This is an analysis procedure where, given an opticaf fiber, the

optimum source to operate with the fiber can be found.

An opposite problem to the one just described, which consists

of synthesizing an optical fiber for optimaf operation with a given

opticaf source, is usually of particular interest.

A method for accomplishing the synthesis of single-mode step-

index opticaf fibers has been reported in a previous work [10].

Asymptotic approximations proposed by Miyagi and Nishida [8]

were used in that work. The chemicaf composition of the core

and cladding materials were assumed known and the available

light source wavelength was chosen equal to ~. In this case, the

total dispersion equation is used for the calculation of the fiber

core radius. From the characteristics of the method adopted, the

calculated radius is the one that allows pulse transmission with

minimum totaf dispersion when the fiber operates with the wave-

length of the available source. Due to its simplicity, all the

computational procedures were implemented on a small program-

mable calculator. However, due to the asymptotic approximation

used, only one value of radius for minimum total dispersion was

found. The existence of two core radii for the same value of ~

was suggested in a previous work [3].

In the present work the weakly guiding characteristic equation

was used as the theoretical basis for the synthesis of single-mode

step-index optical fiber. The use of this equation allows for the

calculation of the two-core radii that yield minimum total disper-

sion, as predicted in [3]. As expected, the use of the weakly

guiding characteristic equation reduces the amount of data to be

manipulated and the complexity of the algorithms to be adopted.

In the following sections, a description of the theory is given

along with the results of a few cases.

II. BASIC EQUATIONS

The total dispersion equation which is the wavelength deriva-

tive of the transit time per unit fiber length, is given by [6]

D~ = (~/cn<){(& b)v2 + bUl+2b’@+ b“6/2

-(ne)-’[n,rr~ + b++ b’d/2]’} (1)

where c and A are the free-space phase velocity and wavelength

of the light wave, respectively; b is the normalized propagation

constant given by the relation

~=1 u2_w’
~’ ~’

(2)
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